

Presenter

TECHNICAL TRAINER

Josh Goodman

Josh.goodman@carrierenterprise.com

Cematraining.com

CONTACTUS

WELCOME TO CARRIER ENTERPRISE'S TRAINING SITE

Email : updates@cernatraining.com

DEALER RESOLIRCES

Carrier Enterprise Mid-Atlantic Technical Support Site Carrier, Bryant and Payne Technical training and support

Site Demo

Welcome to Carrier Enterprise's Technical site, built by HVAC techs for HVAC techs; Our goal is to help todays HVAC tech with Carrier Bryant and Payne Equipment gain a better understanding of operation and trouble shooting in every changing word.

We start by providing first class instruction to each technician that attends our training. Our goal is to enhance each technician's knowledge level in HVAC fundamentals, as well as in the area of Carrier. Bryant and Payne equipment. As a result, installation and troubleshooting efficiency will increase, leading to an increase in your technician's profitability. Whether it is in our training rooms or utilizing our new virtual web classroom, your technicians will receive an education that is second to none.

All technical training classes are eligible for NATE Continuing Education Hours.

SELE-STUDY COLLESES

"CE – HVAC Contractor Assist"

0

Warranty

Products

?

AHRI

Menu

CE

CE

9:32 1	aul LTE 🚍
Q 24VNA0	🛛 Cancel 🦉
📾 Scan	🗡 Light
DOCUMENT SEARCH HISTORY	
A 24VNA048A003	×
/ FB4	×
59MN7A060V1714	X
25HMA648	×
A 25HNA648	×

QWE	RTYUI	ΟΡ
AS	DFGHJ	ΚL
▲ Z	XCVBN	M
123	space	Search
		Ŷ

9:32 1		att	.TE 💼
<	24VNA0	Q	Ä

24VNA Document F... CARRIER

24VNA024A003

Carrier[®] Infinity[®] - 2 Ton 20 SEER Residential Variable Speed Air Conditioner Condensing Unit with Greenspeed[™] Intelligence

24VNA036A003

Carrier[®] Infinity[®] - 3 Ton 20 SEER Residential Variable Speed Air Conditioner Condensing Unit with Greenspeed[™] Intelligence

24VNA048A003

Carrier[®] Infinity[®] - 4 Ton 20 SEER Residential Variable Speed Air Conditioner Condensing Unit with Greenspeed[™] Intelligence

24VNA060A003

Carrier[®] Infinity[®] - 5 Ton 20 SEER Residential Variable Speed Air Conditioner Condensing Unit with Greenspeed[™] Intelligence

Warranty

Products

2

AHRI

 \equiv

Menu

>

>

>

>

"Carrier Service Tech"

Tech Support

866-902-4822 Option #4

Training Agenda

- Product Introduction
- Component Overview
- Installation Process
- Servicing

The Value of 26/24

- Top Tier Air Conditioner/Heat Pump
- PLUS up to 26 SEER, 13 EER (5 Ton)
- PLUS Quiet Mode
- PLUS Wider Operating Range
- PLUS Enhanced Dehumidification
- PLUS Long Line-Set Length
- PLUS Over-the-Air Software Updates
- PLUS Outdoor Unit Updates via Bluetooth[®]
- PLUS Service Tech App Interactive Troubleshooting

All in the same footprint as today!

Quiet Mode = Max level of 69 dBa

26/24 Nomenclature

- AC: 24VNA6
- HP: 25VNA4
- VNA0 Products Phased Out

- AC: 186CNV
- HP: 284ANV
- 180CNV and 280ANV Products
 Phased Out

WALL CONTROL

IMPORTANT

- All 26/24 units come with an Infinity or Evolution™ (Series B) Wall Control
- 26/24 units operate on an Infinity or Evolution[™] (Series B) Wall Control
- Before installation, the Infinity or Evolution[™] wall control needs updated to latest firmware

Refer to document:

Infinity System Control and Infinity 26/24 Greenspeed[®] Firmware Update OR Evolution[™] Connex[™] and 26/24 Evolution[™] Extreme Via MicroSD[®] Card for Controls Manufactured Prior to the S/N Cutoff Date

FIRST – Update Wall Control

- Check Control Software Versioning
- Control must be firmware version 3.0 or higher
- Control must be a Series B model:

✓ SYSTXCCITC01-B
 ✓ SYSTXCCICF01-B
 ✓ SYSTECCWIC01-B
 ✓ SYSTECCWIF01-B

Once the Infinity or Evolution™ System Control serial number cutoff date is determined, refer to Product Bulletin #101-20-12.

(formerly AOC Board)

Primary Control Module

- VFD
- Controls heating EXV and defrost
- Vapor injection EXV (where used) to either provide superheat or engage the vapor injection circuit

PCM – Primary **Control Module**

(formerly AOC Board)

The PCM also proactively prevents fault trip events; and modifies operation to provide the VFD and compressor protections and utilizes the following sensors:

Sensors

- suction pressure transducer (SPT), discharge pressure transducer (DPT) an outdoor suction thermistor (OST) outdoor air thermistor (OAT), outdoor coil thermistor (OCT), high pressure switch (HPS), and discharge temperature sensor (ODT). Motor Control Drive (VFD)

PCM Low Voltage Fuses

• 3 fuses

Fuses

CF

- Separated into circuits
- Fuse 1: PEV, BTM, Reversing Valve
- Fuse 2: LLS
- Fuse 3: EXVs

EMI Filter Board

The EMI filter board is intended to block the inherent electrical noise associated with VFD drives from being transmitted overpower lines throughout the home.

It also contains non-replaceable fuses which will protect the VFD in the event of a severe power surge condition.

VFD – Variable Frequency Drive (Inverter)

Motor Control Drive + Brushless Permanent Magnet (BPM)

- Operates over a wide range of speeds through the combination of the drive and motor
- Motor Control Drive
 - Provides system protection when various abnormal conditions occur
 - Limits the compressor envelope of operation to appropriate boundaries
- Provides system data feedback to the system controller
- Allows reduced operation in case of system faults or issues.

VFD – Variable Frequency Drive

F

- Converts sinusoidal AC input voltage into a variable frequency AC output generated using a PWM modulation
- Powers and adjusts fan motor and compressor operation.
- Adjust the output voltage to run the compressor/ fan motor at the correct speed at any load point within the envelope
- UPDATEABLE with Service App or OTA

Bluetooth[®] Module (BTM)

- First outdoor units with Bluetooth[®] connectivity to the ODU.
- Troubleshoot, service and even "push" software/firmware updates to the ODU via ServiceTech app.
- Reduces trips into the home
- Reduces wrenching and use of gauges, meters, and hoses

Compressor (Samsung)

Brushless Permanent Magnet Motor Compressor (BPM)

- The motor inductance reacts to the drive current and a sinusoidal current is induced through the motor windings.
- The sinusoidal current sets a rotating magnetic field, at the frequency set by the drive.
- The magnets enable the motor to synchronize to that frequency, set by the drive.
- Supplies the mechanical power afforded to it by the drive voltage, current and frequency.

Compressor (Samsung)

WINDING	24	36	48	60
Between terminals T1,T2,T3 (U,V,W)	.74	.453	.424	.424
Between terminal & ground		>1 mega	OHM	

- Variable Speed Compressor Power INPUT
 Terminals
- This compressor operates with a 3-phase variable frequency PWM variable voltage to the three fusite terminals.
- Variable Speed Compressor Resistances (winding resistance at 68°F / 20°C)

DUAL Sound Blankets

CE

Crankcase Heater Operation

- This unit has an external crankcase heater that will be energized when the outdoor ambient temperature drops below 60F. This prevents the compressor from being the coldest part of the system thus enhancing the reliability.
- The crankcase heater will function as needed any time the outdoor unit is powered. The indoor unit and UI do not need to be installed for the crankcase heater to operate properly.

ECM Fan Motor

- The VFD energizes outdoor fan when compressor is operating, except for defrost and as needed during low-ambient cooling operation.
- The outdoor fan remains energized if an over pressure or over temperature event should occur. This OD fan is an ECM motor which operates at varying speeds depending on the ambient and the demand.

EXV

A heating EXV is used for refrigerant metering in heating mode.

- The primary control (PCM) senses suction pressure and temperature to control the EXV.
- EXV is a stepper motor with 475 steps that range from fully open to fully closed

Unit Time Delays

- Five-minute time delay to start cooling or heating operation when there is a call from the user interface. To bypass this feature, momentarily short and release Forced Defrost pins.
- Five-minute compressor re-cycle delay on return from a brown-out condition.

Active Envelope Management (AEM)

- AEM is an algorithm managed by the PCM to protect the reliability of the system compressor. 25VNA4 and 24VNA6 models are all equipped with suction and discharge pressure transducers.
- A reliable operating envelope has been defined for each compressor model and the PCM will use pressure measurements to adjust system operating parameters and ensure the compressor is always operating within the boundaries.
- Fan speeds, Compressor speeds, and EXV superheat targets are all adjustable to maintain safe and reliable compressor operation. Depending on need, the fan may cycle on and off during normal operation.

Model Plug

CE

	MODEL PLUG	PIN RESISTA	NCE (K-ohms)	
MODEL NUMBER	NUMBER	Pins 1-4	Pins 2-3	
24VNA624	HK70EZ009	5.1K	91K	
24VNA636	HK70EZ021	11K	39K	
24VNA648	HK70EZ033	18K	11K	
24VNA660	HK70EZ045	18K	220K	
		PIN RESISTANCE (K-ohms)		
		PIN RESISTA	NCE (K-ohms)	
MODEL NUMBER	MODEL PLUG NUMBER	PIN RESISTA Pins 1-4	NCE (K-ohms) Pins 2-3	
MODEL NUMBER	MODEL PLUG NUMBER HK70EZ003	PIN RESISTA Pins 1-4 5.1K	NCE (K-ohms) Pins 2-3 24K	
MODEL NUMBER 25VNA424 25VNA436	MODEL PLUG NUMBER HK70EZ003 HK70EZ015	PIN RESISTA Pins 1-4 5.1K 5.1K	NCE (K-ohms) Pins 2-3 24K 360K	
MODEL NUMBER 25VNA424 25VNA436 25VNA448	MODEL PLUG NUMBER HK70EZ003 HK70EZ015 HK70EZ027	PIN RESISTA Pins 1-4 5.1K 5.1K 11K	NCE (K-ohms) Pins 2-3 24K 360K 150K	

An RCD replacement board contains no model and serial information. If the factory control board fails, the model plug must be transferred from the original board to the replacement board for the unit to operate.

DP & SP Transducers

Discharge & Suction Pressure Transducers

These units use a 5 VDC output high & suction pressure transducers that provides a 0- 5VDC data for interpretation by the control board a 0 to 620 psig range of pressure at the locations.

Signals used by control board for:

- Low pressure cut-out
- Loss of charge management,
- Compressor overall envelope management
- Oil circulation management
- Lubrication management and
- EXV control
- Hi pressure monitoring

Temperature Thermistors

- Thermistors are electronic devices which sense temperature.
- As the temperature increases, the resistance decreases.
- Thermistors are used to sense outdoor air (OAT), coil temperature (OCT), the suction line thermistor (OST) between the reversing valve and the accumulator, and the outdoor discharge thermistor (ODT) at the outlet from the compressor.

Piping & 5-ton differences

- Vapor Injection
- Braze plate heat exchanger (HEx)
- Scroll compressor

- 2 EXV
 - 1 expansion valve
 - 1 vapor injection control

EXVs are different types and cannot be interchanged

Braze Plate Heat Exchanger (5-ton units only)

In the 5-ton only

- Increases capacity
- · Part of the vapor-injection circuit
- Injects sub-cooled liquid from the condenser into the heat exchanger
- Injects into the mid-port of the compressor.
- Sub-cooled liquid then leaves the other side of the heat exchanger further sub-cooled before exiting to the evaporator

Vapor Injection Process

Introduce subcooled refrigerant into the system to increase capacity while using little additional power

New Components: Status Lights

CE

LED Lights – VFD

Solid red LED on Inverter indicates power to the Inverter

Solid green LED indicates low voltage power

Rapid inconsistent flashing green LED indicates communication with the PCM board

LED Lights – VFD

Solid green LED indicates low voltage power and communication with the UI

The PCM is equipped with a bi-color LED for indicating successful or unsuccessful communication with the VFD.

This LED is located just below the VFD-PCM communication port on the PCM.

The LED will flash green when good messages are received from the VFD and red when bad or no messages are received from the VFD.

LED Lights – PCM (GREEN)

LED Lights – PCM (AMBER)

Amber LED flashes fault code

Amber colored STATUS light indicates operation and error status.

5X7 Scrolling LED panel displays fault code for easy identification

Bluetooth® is a registered trademark of Bluetooth SIG, Inc.

Steady flashing red LED indicates powered and ready

LED Lights – BTM

5-Speed

Variable frequency and amplitude 3-phase output to fan motor

> 230-volt split-phase input power from outdoor disconnect

 Variable frequency and amplitude 3-phase output to compressor

> Input voltage rectified and increased to feed DC bus

Unit Low Voltage

Control wiring connections:

 AB plug used for communicating applications.

 Discrete 24VAC connections used for 2-stage applications (must connect indoor 24VAC to R)

Installation Process

Installation Order of Operations

- Before you start Wall Control
- Safety
- Indoor Coil
- Line-sizing / Piping Connections
- Wiring & Electrical Connections
- Airflow
- Accessory Install
- Unit Start-up & Charging
- Pump-down & Evacuation
- Firmware Updates

FIRST – Update Wall Control

- Check Control Software Versioning
- Control must be firmware version 3.0 or higher
- Control must be a Series B model:

✓ SYSTXCCITC01-B
 ✓ SYSTXCCICF01-B
 ✓ SYSTECCWIC01-B
 ✓ SYSTECCWIF01-B

Once the Infinity or Evolution™ System Control serial number cutoff date is determined, refer to Product Bulletin #101-20-12.

Step 1 – Updating the Wall Control

servio	.e
service information	
service reminder setup	
software update	
model/serial numbers	
back i	done
	0
-	

- Update with MicroSD[™] Card
- From the MENU screen, select the SERVICE icon
- Select software update

Step 2 – Updating the Wall Control

service information	
service reminder setup	
software update model/serial numbers	
back	done

 Insert the MicroSD[™] card in the bottom of the System Control until it clicks

Step 3 – Updating the Wall Control

(heat pump or air conditioner) softw	are update
back i	done
	\cap

- Select update software using MicroSD[™] card
- If the card has been inserted correctly, the screen below will appear. Select system control software update

Step 3 – Updating the Wall Control

- If the MicroSD[™] card is not in place or fully locked into the slot you will get the message below.
- Reinsert the MicroSD[™] card and the control will automatically detect the card and begin the upgrade process.

Step 4 – Updating the Wall Control

- Press YES to continue with the firmware upgrade
- The upload and installation will take several minutes
- Once upgraded, select the done button

NOTE: There will be a longer than normal delay as the firmware is installed

Step 5 – Updating the Wall Control

	softw	are upgrad	e	
softwa	re success 131	fully upgrad 626-3.0	ed to vers	sion
		j		done
E	1		\sim	
U E				

- Once restarted, this will complete the Infinity or Evolution[™] System Control firmware upgrade process
- Remove the MicroSD[™] card

Safety

- *Review safety information in the installation manual*
- Always check local codes
- Utilize electrical lock-out/tag-out procedures
- Wear gloves, goggles, and appropriate PPEs
- Always consult the Installation Instructions for additional safety warnings

Installation Improvements

- Packaging redesigned less damage
- No exterior muffler (all sizes)
- Bluetooth[®] module added (BTM)

Replacement Unit Applications

Apply normal equipment de-commissioning processes when doing a replacement installation. Always:

- Pull old line-sets and use new tubing on the new installation
- Pull wiring from disconnect to the unit and use new 18 AWG wiring on the new installation
- Properly discharge the old system by using appropriate EPA recovery measures

Installing the 26/24

26/24 Match-up & Compatibility

- Must be communicating equipment
- 26/24 outdoor unit must be connected to a factory-approved, properly sized, AHRI-rated combinations:
 - Fan coils (all FEs)
 - Furnaces (Infinity, Evolution™)
 - Evaporator coils

Indoor Coil & Filter Drier Installation

ALWAYS install the Liquid-Line Filter Drier to protect the EXV & TXV

- Braze 5-inch (127 mm) liquid tube to indoor coil
- Wrap filter drier with damp cloth and braze it to the 5-inch liquid tube
- Connect and braze liquid refrigerant tube to filter drier

*Must use refrigerant-grade tubing for line-sets *Installation of filter drier in liquid line is required *Consult Indoor Coil Installation Instructions for complete installation information

Filter Drier Locations 26/24

Inside – 2, 3, and 4 Ton

Outdoor – 5 Ton unit only

Placing the Outdoor Unit

- Choose best location (away from bedrooms, dryer vents, debris, etc.)
- Install on a solid, level mounting pad
 - Elevate unit (for HPs)
- Adhere to minimum clearance requirements
- Check operating ambient temperature
 - Max. in cooling mode is 125°F
 - Max. in heating is 66°F

Running Line-set & Connections 26/24

	LIQUID		VAPOR*		
UNIT SIZE	Connection Diameter	Tube Diameter	Connection Diameter	Max (Rated) Diameter	Minimum Tube Diameter
25VNA424	3/8	3/8	3/4	3/4	5/8
25VNA436	3/8	3/8	7/8	7/8	5/8
25VNA448	3/8	3/8	7/8	1-1/8	3/4
25VNA460	3/8	3/8	7/8	1-1/8	3/4

The muffler install no longer needed (first generation Greenspeed)

250 feet maximum equivalent length

LLS needed if vertical line-set exceeds 20 feet or the horizontal line-set is greater than 80 feet

Running Line-set & Connections

- IF B EXCEEDS 20',
 LIQUID LINE SOLENOID
 VALVE REQUIRED
- IF A + B + C EXCEEDS 80', LIQUID LINE SOLENOID VALVE REQUIRED
- REFER TO INSTALLATION INSTRUCTIONS FOR GUIDELINES

CE

LLS wiring

Fig. 4 – Liquid Line Solenoid Electrical Connection (Required for long line applications)

5-Stage Lineset Sizing

	LIQU	LIQUID		VAPOR [†]		
UNIT SIZE	Connection Diameter	Tube Diameter	Connection Diameter	Max (Rated) Diameter	Minimum Tube Diameter	
13, 24B	3/8	3/8	3/4	3/4	5/8	
25	3/8	3/8	3/4	7/8	5/8	
36	3/8	3/8	3/4	7/8	5/8	
37	3/8	3/8	7/8	1-1/8	5/8	
48	3/8	3/8	7/8	1-1/8	3/4	
60	3/8	3/8	7/8	1-1/8	3/4	

Table 1 - Refrigerant Connections and Recommended Liquid and Vapor Tube Diameters (in.)

Maximum Line Lengths for Heat Pump Applications

	MAXIMUM ACTUAL LENGTH ft (m)	MAXIMUM EQUIVALENT LENGTH† ft (m)	MAXIMUM VERTICAL SEPARA- TION ft (m)
Units on equal level	100 (30.5)	100 (30.5)	N/A
Outdoor unit ABOVE indoor unit	100 (30.5)	100 (30.5)	100 (30.5)
Outdoor unit BELOW indoor unit	See Table 'Maximu	im Total Equivalent Length: Outdoor Unit BELOV	V Indoor Unit

† Total equivalent length accounts for losses due to elbows or fitting. See the Long Line Guideline for details.

Maximum line set length is 100 feet for 5-stage units

Piping Connections

Make Piping Connections

- Vapor tube to vapor service valve
- Liquid line to liquid service valve

IMPORTANT – Use nitrogen brazing for ALL sweat connections

- Prevents oxidation and carbon inside of tubing/closed system
- Protects EXV

Eliminates issues down the road

Always use nitrogen when brazing. Just 1 -2 lbs. moving thru the tubes while brazing Pressure test systems to 400 psig Pressure test Ductless systems to 500 psig

Test Piping Connections

IMPORTANT

Perform final check of all tubing

- Ensure factory tubing did not shift during shipment
- Tubes aren't rubbing against other tubes or sheet metal
- Feeder tubes wire ties are secure and tight

Evacuate Refrigerant Tubing and Indoor Coil

Must use proper evacuation using:

- Deep vacuum method (down to 500 microns)
 OR
- Triple evacuation method

*See Service Manual for triple evacuation method

Evacuate Refrigerant Tubing and Indoor Coil

Deep Vacuum Method - Assures system is free of air and liquid water

- Use high-capacity vacuum pump capable of pulling a vacuum of 500 microns
- Vacuum gauge must be capable of accurately measuring vacuum depth

Wiring & Electrical Connections

- Make Electrical Connections
- Route Ground and Power Wires
- Connect Ground and Power Wires
- Connect Control Wiring
- General Information
- Final Wiring Check

Wiring the Wall Control

Connect Control Wiring

- Only two wires (AB) to Infinity or Evolution[™] capable indoor unit are required
- Typical 4-wire (ABCD) may be connected

Wiring the Wall Control

CE

Wiring Requirements

- Use #18 AWG or larger colorcoded, insulated (35°C minimum) wire for low voltage
- All wiring must be NEC Class 2
- Separate wires from incoming power leads
- Low voltage wiring
 - Runs of greater than 200 feet, consult wall control manual

Eliminating Wiring Communication Noise

DO NOT route control wires parallel to high voltage wires

- Creates electrical noise
- Generates nuisance fault codes

ONLY cross low-voltage control and high voltage wires at perpendicular angles

Eliminates line noise

USE SHIELDED wiring/cable install accessories if communication issues exist

• Shielding grounded at one end of the wire only

Airflow Set-up

- 26/24 can only be installed with Infinity or Evolution[™]-capable indoor and Infinity or Evolution[™] System Control
- 26/24 configuration and indoor airflows are determined by communicating control setup
- 26/24 automatically selects the airflow based on equipment size, and call from the Infinity or Evolution[™] control
 - Comfort, Efficiency and Max airflow for Heating and/or Cooling modes available
 - Dip switch adjustments are not necessary

*See User Interface Installation Instructions for additional available adjustments NOTE: Ensure the Infinity or Evolution™ control, VFD, and PCM are updated with the latest available software version.

Infinity® Touch User Interface

Evolution® Connex User Interface

Introduction

Compatible with the following products:

- Infinity[®] / Evolution [®] Series Furnaces, Fan Coils, Condensing Units and Heat Pumps
- Performance[™] / Preferred[™] Series
 Condensing Units and Heat Pumps
- Infinity[®] / Evolution [®] Wi-Fi System
- Small Packaged Products

Geothermal Heat Pumps

Compatibility

- The Touch / Connex replaces original User Interfaces
- The Touch /Connex is backward compatible with all Infinity[®] / Evolution [®] equipment
- Not all control features are backward compatible
 - Low ambient control
 - Auto defrost
 - (features dependent on outdoor unit)

User Interface Overview

- Command center for entire system
- Locate as if a thermostat
 - See earlier sensor location guidelines
 - Only humidity sensor in system
- For more freedom in location:

CE

 Use Remote Room Sensor. Connects to S1&S2 Connections on UI Back plate.

Sensor Location Guidelines

CE

Locate devices:

- Approximately 5 feet (1.5 m) from the floor
- Close to or in a frequently used room
- On an inside partition
- On a wall without pipes or ductwork

Do not locate devices:

- Close to a window outside wall or a door to the outside
- Exposed to direct light, heat, sun, etc.
- Close to or in direct airflow from registers
- In alcoves, behind doors, or other areas of poor circulation

User Interface (UI)

4.3.2. Remote Room Sensors

A Remote Room Sensor can be used with the Infinity System Control to take the place of the control's internal temperature sensor. This allows the Infinity System Control to be mounted in areas with less than optimal airflow (such as near an exterior door, window or in a closet). The remote sensor can be wired to the terminal block connectors labeled S1 and S2 at the control's backplate, or the ZS1 and ZS1C connection at the Damper Control Module. In either case, the Infinity System Control will automatically detect the Remote Room Sensor and ignore its internal temperature sensor.

NOTE: Humidity sensing will occur ONLY at the Infinity System Control. The Remote Room Sensor does NOT have humidity sensing capability.

Condensate safety connections - "G" Terminal

Do not connect to the ABCD wires

Will be shown in a few slides how to setup in the UI

CE

Humidifier Wiring Configurations

Infinity/Evolution with a Steam Humidifier

Installation Sequence

CE

Power Up Sequence

On power up

- User interface:
 - Scans ABCD bus
 - Identifies indoor unit
 - Identifies communicating outdoor unit
 - Identifies self-identifying electric heat

Searching for indoor unit

а 4 ж.4.

Selecting Electric Heat

- User interface locates
 self-identifying heater kW
- Enter heater kW for non-self-identifying heaters
- Touch MORE for additional heater sizes
- Touch NONE for a unit without an electric heater
- Select NEXT

Elec P	tric heater not f lease select siz	found e:
3 KW	5 KW	9 KW
10 KW	15 KW	20 KW
back more		next

Zoning

Zoning		Zoning	
	Zone 1	User Interface	
	Zone 2	Smart Sensor	
	Zone 3	Smart Sensor	
Sparching	Zone 4	Remote Sensor	
Searching_	Zone 5	Remote Sensor	
	Zone 6	Remote+Smart Sensor	
	Zone 7	Smart Sensor	
	Zone 8	Remote Sensor	
	retry		next

Static Pressure Check

Airflow measures:

Duct static pressure, system cfm, and motor rpm

S tatic	pressure	check	
	•		

Stat	ic pressure check	
Static Pressur	e 0.52	
Blower CFM:	0	
Blower RPM:	792	
pack		next

Zone System Duct Assessment

NOTE: NOT PERFORMED FOR A NON-ZONED SYSTEM

Infinity® Touch User Interface

Evolution® Connex User Interface

Installation Instructions

Installation Instructions Come with every User Interface....

PLEASE READ THEM!!

Instructions

NOTE: Read the entire instruction manual before starting the installation. **NOTE:** Please refer to the literature provided with the connected HVAC equipment for more details on system operations with specific pieces of equipment.

The features and functions outlined in the Installation Instructions reflect Version 1.3 or later software. Occupancy sensing compatibility is only available with Series B Infinity System Controls. See the Infinity System Control product page on the HVACPartners.com website or the Downloads section of the www.MyInfinityTouch.Carrier.com website for the latest software release and literature.

Installation & Service Menu

Installation & Service Menu

Thermostat – Setup

Thermostat – Setup

scheduling on/off	
Smart Recovery on/off	
room occupancy setup	

Thermostat – Auto Mode and Deadband

6.3.1.1. Auto Mode set up

Once the auto changeover option has been selected, touch SAVE.

- Enable or Disable: Choose to enable or disable auto changeover mode
 - Default = Enable
 - Default = Enable
- Simultaneous Heat/Cool: Choose to turn simultaneous heat cool demand feature on or off.
 - Default = Off
- If Simultaneous Heat/Cool is turned ON, Auto changeover time is grayed out and shows N/A.
- If Simultaneous Heat/Cool is turned OFF, Auto changeover time: Adjustable from 5 to 120 minutes
 - Default = 30 minutes

Thermostat – Auto Mode and Deadband

Thermostat – Auto Mode and Deadband

NOTE: AUTO mode is intended to switch between Heating and Cooling modes based on temperature demand. A gradual auto transition is the energy--conscious default that will satisfy the majority of customers. Some customers might have significant and simultaneous heating and cooling demands in different zones. To address this need, a special simultaneous heating and cooling demand auto mode could be enabled by the Installer. The simultaneous heating and cooling demand auto mode will result in higher energy usage but benefit the customer with greater comfort.

RECOMENDED!!!

Thermostat – Offsets and Reset

- Temperature Offsets
 - -5° F to +5° F, 1° F increments
- Humidity Offset
 - -10% to +10%, 1% increments

Scheduling

Smart Recovery

Smart Recovery

Smart Recovery causes the system to ramp the system target set points to those for the next programmed schedule period to help save energy during period transitions. Smart Recovery will start recovery 90 minutes prior to schedule change in both heating and cooling mode.

Warn Your Customer: This is the default setting. System can come on as early as 90 minutes before programmed period to get space to next period's set point. There will be an indication on display that this is happening.
Occupancy

6.3.1.6. Room Occupancy Setup

This option lets the installer enable or disable the room occupancy sensor that is in the wall control. After the selection is made, touch SAVE. When enabled, the sensor will be used to determine if the room is occupied.

Occupancy

Integrated Motion/Occupancy Sensor

Software Version 1.1 includes Home function Detection of occupancy changes system from Away or Vacation to Home activity

Software Version 1.3 adds Away function Detection of unoccupied condition puts systems into the Away activity Occupancy Status Gray – Unoccupied Blue – Motion Green - Occupied

Motion/Occupancy Sensor location

Occupancy Sensing

How does it work?

Motion ≠ Occupancy

Wall control counts the number of motion events within a defined period of time to detect occupancy, versus "walking through the room"

Occupancy status sustained for one hour to account for stillness in the room while occupied

Occupancy-sustain timer reset to one hour each time occupancy is again detected

Once the Sleep activity is entered, the activity stays in Sleep

Any HOLD activity will override Occupancy sensing activity changes

During scheduled vacations, if Occupancy is sensed, the system will change to the Home activity

If Scheduling is disabled, and Occupancy Sensing is enabled, then activity changes based on Occupancy status will be enabled

Furnace - Setup

setup	setup	setup		
thermostat	zoning	\land		
furnace	accessories			
ac/heat pump	utility curtailment			
heat source lockouts	hydronic airflow			
back i	done back i	done		

Furnace - Setup

- Furnace Airflow
 Comfort or Efficiency
- Air Conditioning and Heat Pump Airflow
 - Comfort, EFF325, EFF350, Maximum, and Quiet
- Heat Pump Heating Airflow
 - Comfort, EFF325, EFF350, and Maximum
- Dehumidification Airflow
 - High and Normal

furnac	e set up	
furnace airflow		
AC/HP airflow		
furnace staging		
furnace airflow lim	its	
back	D	done

Airflows

Furnace Airflow

Fan Coil Airflow

Furnace Staging

- Staging
 - Low, Low-Medium, Low-High, Medium, Medium-High, High, Furnace, and System
- Airflow Limits*
 - MIN Increase minimum capacity
 - MAX Decrease maximum capacity
- Off Delay
 90, 120, 150, and 180 seconds
- Altitude
 - Installed elevation
- Dehum Drain
 - Fan OFF at end of cooling (Continuous Fan Application)
- * These only apply to modulating furnaces

"G" Terminal

FE Fan Coil or Variable Speed Furnace

G Input Wiring for Shutdown Operation Contact type selectable (N.O./N.C.)

G Terminal - few ways to use it

- G Terminal (Furnace and Fan Coil)
 - Switch or relay between "R" and "G" terminal
- Fan Speed
 - = Low
 - Medium
 - High
- Shutdown
 - N.O. contact
 - N.C. contact
- Alert
 - Ability to customize

The detailed instructions on how to perform the task of turning on the "G" option is in the User Interface Installation Manual.

You can only use the "G" Function for either the fresh air or the float switch but not both. If you have both it is recommended that you break "R" for the float switch.

setup	setup		
thermostat	zoning		
furnace	accessories		
ac/heat pump	utility curtailment		
heat source lockouts	hydronic airflow		
back i done	back i done		

- Cooling Lockout
 None, 45, 50 or 55° F
- Defrost Interval (Heat Pump)
 - 30, 60, 90, 120 minutes and Auto
- Low Ambient Cooling
 - Yes or No
 - Cooling Lockout

Quiet Shift

- On or Off
- AC/Heat Pump rpm max
 - Only functions with variable-speed compressor
- High Cool Latch
 - System in control
 - High cool latch above (Temperatures between 80 to 110° F)
 - Low cool only
- High Heat Latch
 - System in control
 - High heat latch below (Temperatures between 20 to 50° F)
 - Low heat only

- Quiet Shift
 - 10 seconds at the beginning end of defrost
- Brownout Disable
 - Voltage detection feature
- Heat Source Lockout
 - Heat Pump Lockout
 - NONE
 - + $-\,20^\circ$ F to 55° F
 - Furnace Lockout
 - NONE
 - 5° F to 55° F
 - Electric Heat
 - 15° F to 55° F

Heat Source Lockout

Accessories

ассе	essories set up	
filter		
humidifier		
ultra violet ligh	ts	
ventilator		
back	i	done

Filter Type

- Change service interval notification to user
 - Replace or clean filter
 - 1 to 18 months
 - Default 3 months

Humidifier

- Change service interval notification to user
 - Replace or clean filter
 - 1 to 24 months
 - Default 12 months

UV Lights

- Change service interval notification to user
 - Change UV lights
 - 6 to 48 months
 - Default 12 months

Ventilator

- Change service interval notification to user
 - Clean ventilator pre-filter
 - 60 to 180 days
 - Default 90 days

Utility Curtailment

- Available only on cooling units and heat pumps
- Requires input from power company
- Limited to: First-stage capacity n
 - Turn off

	setup	
zoning		
accessories		
u tili ty cur tai	lment	
hydronic air	flow	
back	i	done

- Will shut off compressorHybrid Heat or Hydronic Heat
- Curtailment not available for electric heating operation

Checkout Equipment

Furnace Check

modulating furnace ch	leck
furnace heat:	low
airflow CFM:	800
leaving air temperature:	65
inducer RPM:	123
blower RPM:	1200
static pressure:	0.66
low heat:	12:14
O	stop

This applies to Modulating Furnaces as well as Two Stage Furnaces.

Heat Pump Check

off 800 23 91 0.66 1125 65
stop

During AC/HP checkout, what airflow should be delivered?

- Variable speed equipment will run at set parameters (Proprietary) based on several conditions. 100% of current conditions
- Checkout mode should only be used to verify equipment operation.
 - <u>Charging mode</u> should be used to verify refrigerant charge on these types of systems, <u>not checkout</u>!

Humidifier and Ventilator Check

Commissioning and Charging

There are 2 ways to charge the system

- Weigh-in-method look at install guide and weigh
 - Calculate the additional needed for the line-set
- Subcooling
- In the User Interface use the "refrigerant charging" function to charge and start the system

Charging

Charge in CHARGING mode

Factory charge amount and desired subcooling are shown in the user interface (UI). To properly check or adjust charge, conditions must be favorable for subcooling charging in cooling mode. Favorable conditions exist when the outdoor temperature is between 65° F and 100° F (18° C and 38° C), and the indoor temperature is between 70° F and 80° F (21° C and 27° C). If the temperatures are outside of these ranges, weigh-in charge only. If confirmation is needed return and check subcooling when the temperatures are within the desired range.

Charging Procedure: Unit is factory charged for 15ft (4.57 m) of lineset and for smaller rated indoor coil combinations. If any refrigerant charge adjustment is required based on the indoor coil combination you select and the line set length you input, the UI will calculate and display the target subcooling and the amount of additional charge to be added. Therefore UI is your source of information for charging the system correctly. Refrigerant charge adjustment amount of additional amount of refrigerant charge adjustment (1.7.74 g/m) of 3/8 liquid line above or below 15ft (4.57 m) respectively, and an additional amount of refrigerant charge adjustment (2 lbs) for a large ID coil if required, is calculated and displayed by the UI. Perform a final charge check only when in cooling and OD is between 65° F (18° C) and 100° F (38° C).

NOTE: UI indicates acceptable conditions if outside of this range. Do not charge if outside $65^{\circ}F(18^{\circ}C)$ and $100^{\circ}F(38^{\circ}C)$ outdoor temperature.

If the range is acceptable, go the CHARGING screen in the user interface (UI). At cooling conditions, set the user interface (UI) to check the charge in cooling mode. Allow system to operate in cooling mode for the stabilization period as indicated in the user interface (UI). Once conditions are indicated as favorable and stable by the user interface (UI), check the system charge by subcooling method. Compare the subcooling taken at the liquid service valve to the subcooling target (LiqLin SC TGT) listed on the charging screen. Add refrigerant if the subcooling is low and remove charge if subcooling is high. Tolerance should be $\pm 2^{\circ}F$.

If any adjustment is necessary, add or remove the charge slowly (no greater than 0.5 lb per minute) and allow system to operate for 15 minutes to stabilize before declaring a properly charged system.

Charging

Charging

There are 2 ways to charge the system Weigh-in-Method

There are 2 ways to charge the system Subcooling

) 📫	installation & s	ervice				
servic -	service info	ormation	refrigerant	charge			
wirele	software u	subcool		hta check charae service valve subcool			
back	dealer con	evacuatic	target ser	service valve subcoole o service valve	subcoc	bl	
	back -	EXV posit		target service valve subcool: stabilization time: mode//speed:	cool//	8.3 °F 0:16 sec 3201 rpm	
		back -	back	heating EXV position: vapor injection EXV position: indoor airflow:		100% N/A 800 cfm	
		1.00	5.X.S	back i		d	one
C	12.20		××			ZD-	for the second

Heating Check Charge

- Indoor conditions should be between 60-80
- The outdoor coil should be clean and clear of any debris or frost
- Must use the refrigerant charging function
- Then use the heating check charge chart to see if you are within guidelines
- Do not use the chart to adjust the refrigerant charge
- If charge is in doubt, remove the charge and weigh-in the correct amount calculated

End of deck 1, change to deck 2

2020 Next Generation Systems & 5 stage part 2

